
Perform K-means clustering on a specified reduction
Source:R/DimensionalityReduction.R
GetKmeanClusters.RdThis function runs K-means clustering on a specified reduction in a SpaMTP Seurat object and adds the cluster assignments to the object metadata.
Usage
GetKmeanClusters(
data,
reduction = "SpatialPCA",
cluster.name = "spatial_clusters",
clusters = 8,
iter.max = 10,
nstart = 1,
algorithm = c("Hartigan-Wong", "Lloyd", "Forgy", "MacQueen"),
trace = FALSE,
seed = 888
)Arguments
- data
A SpaMTP Seurat object containing the results from
RunSpatialGraphPCA().- reduction
Character string stating the name of the reduction slot to use (default = "SpatialPCA").
- cluster.name
Character string of the name of the metadata column to store the cluster labels (default = "spatial_clusters").
- iter.max
Integer defining the maximum number of iterations allowed (default = 10).
- nstart
Integer stating the number of random sets to choose (default = 1).
- algorithm
Character string defining the K-means algorithm to use. One of
"Hartigan-Wong","Lloyd","Forgy", or"MacQueen"(default = "Hartigan-Wong").- trace
Logical boolean indicating whether to produce tracing information on the progress of the algorithm (default = FALSE).
- seed
Integer of the random seed to use for reproducibility (default = 888).
- centers
Integer defining the number of clusters to form (default = 8).