
Package index
Loading Spatial Metabolic Data into a SpaMTP Seurat Object
Functions that allow the user to load in SM data in different formats
-
LoadSM() - Loads spatial metabolic data into a SpaMTP Seurat Object
-
ReadSM_mtx() - Read Spatial Metabolomics matrix file (.csv format)
Converting Between Data Objects
Functions that allow the user to convert between SpaMTP Seurat Objects and Cardinal Objects
-
CardinalToSeurat() - Converts a Cardinal Object into a SpaMTP Seurat Object
-
ConvertSeuratToCardinal() - Converts a SpaMTP Seurat object to a Cardinal object, including annotations and metadata
-
BinSpaMTP() - Bin SpaMTP Object
Annotating m/z Masses
Functions required for performing and handling m/z annotation using a reference metabolic database
-
AnnotateSM() - Annotates m/z values stored in a SpaMTP Object
-
AddCustomMZAnnotations() - Assign custom annotations to m/z values
-
AddFMP10Annotations() - Annotates FMP10 matrix data
-
SearchAnnotations() - Find Annotation
-
GetMZMetadata() - Gets values from a single metadata column for a respective m/z value.
-
FindDuplicateAnnotations() - Finds if any metabolite is duplicated across multiple m/z values.
-
SubsetMZFeatures() - Subset a SpaMTP Seurat Spatial Metabolomic object by a list of m/z's
-
AnnotateBigData() - Annotates vector of m/z values
-
getRefinedAnnotations() - Refines and reduces m/z annotations
-
CalculateAnnotationStatistics() - Calculate annotation statistics for all m/z value suggesting the most likely metabolite based on correlated pathway expression.
-
CalculateSingleAnnotationStatistics() - Calculate annotation statistics for a single m/z value suggesting the most likely metabolite based on correlated pathway expression.
-
Pseudo_msms() - Find all library spectra10 above a cosine threshold for each imaging peak, restricting to a global precursor-mz range.
-
CreatePathwayObject() - Create a SpaMTP Seurat Object containing expression values for all present pathways
Simplifying Lipid Nomenclature
Function used to simplify lipid names into general lipid categories, classes, and more
-
RefineLipids() - Uses common lipid nomenclature to simplify lipid annotations
Analysis of Differentially Expressed Peaks
Functions required for performing pseudo-bulking differential expression analysis
-
FindAllDEMs() - Finds differentially expressed m/z values/metabolites between all comparison groups.
-
DEMsHeatmap() - Heatmap of Differentially Expressed Metabolites
Metabolic and Transcriptomic Pathway Analysis
Functions used to perform pathway analysis, both PCA and metabolite/gene set-based (GSEA)
-
FishersPathwayAnalysis() - Calculates Significant Metabolic Pathways using a Fisher Exact Test
-
FindRegionalPathways() - Regional Pathway Enrichment
-
RunRAMPgeseca() - Runs multilevel Monte-Carlo variant for performing gene sets co-regulation analysis using the RAMP_DB metabolite/gene database.
-
CreatePathwayAssay() - Create a Pathway Assay from Gene or Metabolite Data
Metabolic and Transcriptomic Pathway Visualisation
Functions used to visualise pathway analysis results
-
VisualisePathways() - Visualise Significant Pathways
-
PlotRegionalPathways() - Plot significantly enriched pathways per region
-
PlotPathways() - Plots the expression profile of a feature set corresponding to specified pathways onto a 2D scatter plot based on a dimensionality reduction technique.
-
PlotPathwaysSpatially() - Plots the spatial expression profile of a feature set corresponding to specified pathways
-
PathwayNetworkPlots() - Constructs an interactive network for exploring spatial metabolomics and transcriptomics data.
Dimentionality Reduction Analysis
Functions that are used for calculating PCA embeddings and projections based on SM and/or ST data
-
RunMetabolicPCA() - Generates PCA analysis results for a SpaMTP Seurat Object
-
RunSpatialGraphPCA() - Perform Dimensionality Reduction using Graph-Regularised PCA on Spatial Data
-
GetKmeanClusters() - Perform K-means clustering on a specified reduction
-
ImageMZPlot() - Plot expression of m/z values spatially
-
ImageMZAnnotationPlot() - Plot expression of annotated metabolites spatially
-
SpatialMZPlot() - Plot expression of m/z values spatially for a Spatial SpaMTP Seurat Objects.
-
SpatialMZAnnotationPlot() - Plot expression of metabolites in spatially from a Spatial SpaMTP Objects.
-
Plot3DFeature() - Generates a 3D spatial feature plot from a SpaMTP object
-
MassIntensityPlot() - Plot mass intensity spectra
-
DensityMap() - Generates interactive 3D spatial density plot for m/z values
-
CheckAlignment() - Check multi-modal coordinate alignment
Interactive Spatial Binning Visualisation
Interactive plot that displays spatial changes to m/z intensity values based on changes to bin size.
-
InteractiveSpatialPlot() - Interactive Spatial Plot for visualising different m/z bin sizes
Additional SpaMTP Functions
Functions that can be used to find the closest metabolite and bin the expression of multiple metabolites into one
-
FindNearestMZ() - Finds the nearest m/z peak to a given value in a SpaMTP Object
-
BinMetabolites() - Sums the intensity values of multiple m/z values into one
Spatial Analysis of Metabolomic Data
Functions used to identify spatially correlated features (metabolites/genes)
-
FindCorrelatedFeatures() - Find top features and metabolites that are strongly correlated with a given feature
-
FindSpatiallyVariableMetabolites() - Find Spatially Variable Metabolites
-
GetSpatiallyVariableMetabolites() - Get top spatially variable metabolites
-
RowVar() - Compute the row variances for each m/z value
Multi-Omic Data Integration
Functions used to Align, Map and Integrate Spatial Metabolomic and Transcriptomic data
-
MapSpatialOmics() - Maps Spatial Metabolomic (MALDI) data to corresponding Spatial Transcriptomics data and coordinates.
-
AlignSpatialOmics() - Interactive app for SM and ST coordinate alignment
-
MultiOmicIntegration() - Mult-Omic data integration
-
CreateMergedModalityAssay() - Create a singular multiomics assay by merging data from multiple assays.
-
AddSMImage() - Manually align an image (e.g. H&E, Immuno) to a SM SpaMTP dataset
-
SelectROIs() - Launch an Interactive ROI Annotation App for Seurat Spatial Data
Pre-Processing SpaMTP Metabolic Data
Functions for normalising and visualising the pre-processing of SpaMTP datasets
-
NormalizeSMData() - Normalizes m/z intensity data stored in a SpaMTP Seurat Object
-
TMMNormalize() - Performs TMM normalization between categories based on a specified ident
-
MZRidgePlot() - Generates a ridge plot of spatial metabolic intensity data
-
MZVlnPlot() - Generates a violin plot of spatial metabolic intensity data
-
MZBoxPlot() - Generates a Boxplot of spatial metabolic intensity data
Exporting SpaMTP Data
Function to export SpaMTP data in .mtx, barcodes.csv, features.csv, metadata.csv, and feature.metadata.csv files
-
SaveSpaMTPData() - Saves SpaMTP Object
-
HMDB_db - HMDB_db: A cleaned version of the reference metabolomics dataset from the Human Metabolome Database (HMDB)
-
Lipidmaps_db - Lipidmaps_db: A cleaned version of the lipid database from LIPID MAPS
-
Chebi_db - Chebi_db: Cleaned ChEBI
(Chemical entities of biological interest)reference dataset
-
GNPS_db - GNPS_db: A cleaned database of metabolites from GNPS
-
filtered_fmp10 - filtered_fmp10: data.frame containing FMP10+ metabolite mappings
-
adduct_file - adduct_file: A dataframe containing possible adducts used for pathway analysis
-
analyte - analyte: A dataframe containing ID's of possible RAMP analytes
-
analytehaspathway - analytehaspathway: A dataframe containing RAMP_pathway ID's
-
chem_props - chem_props: A database containing the chemical properties and metadata of each RAMP_DB analyte
-
pathway - pathway: A dataframe containing RAMP_DB pathways and their relative metadata
-
source_df - source_df: A dataframe containing source information about RAMP_ID analyte used for analysis
-
RAMP_hmdb - RAMP_hmdb: A list containing network plot information about pathways from the HMDB database
-
RAMP_Reactome - RAMP_Reactome: A list containing network plot information about pathways from the Reactome database
-
RAMP_kegg - RAMP_kegg: A list containing network plot information about pathways from the KEGG database
-
RAMP_wikipathway - RAMP_wikipathway: A list containing network plot information about pathways from the Wiki database
-
reaction_type - reaction_type: data.frame containing reaction type mappings
-
add_ssc_annotation() - Adds Cardinal ssc segmentation annotation to m/z count data object
-
verbose_message() - Helper function for suppressing function progress messages
-
subset_SPM() - Subsets SpaMTP Seurat Object containing FOVs
-
check_cardinal_version() - Check Cardinal Version
-
BinnedCardinalToSeurat() - Converts a SpaMTP binned Cardinal Object into a SpaMTP Seurat Object
-
spectral_binning() - Spectral binning of intensity values stored in a Matrix object, converted from matter.
-
bin.mz() - Bins multiple m/z values into one.
-
plusminus() - Identifies all mz peaks within a plus-minus range of the target_mz
-
plot_plus_minus() - Helper Function to generate merged counts within the plus minus range provided
-
check_column_type() - Helper function to determine if a column contains categorical or continuous Data
-
pixelPlot() - Helper function for converting Seurat Class ggplots from spot to pixel layout
-
annotateTable() - Annotates m/z values sotred in a data.frame based on reference metabolite dataset
-
labels_to_show() - Filters the annotation list to only include the first n number of annotations per m/z
-
add_backslashes_to_specialfeatures() - Adds in backslashes required to take into account special using grepl such as brackets and +
-
check_and_truncate_adduct_vector() - Checks if the complete adduct is in the data base, else returns a truncated adduct
-
db_adduct_filter() - Filters the provided metabolomic database by polarity and adducts
-
is_formula_valid() - Checks if a formula contains only the allowed elements
-
formula_filter() - Filters reference Database to only select natural elements
-
calculate_bounds() - Calculates the mz range of the observed_df
-
ppm_error() - Calculates the ppm error as a valve
-
ppm_range_match() - Calculates the ppm range and check if mz values are within the range
Returns TRUE if match is found and false if no match.
-
proc_db() - Searches observed mz values against the data base list and returns matching annotations
Differential Abundance Helper Functions
Helper functions for calculating and plotting differentially expressed metabolites
-
run_pooling() - Pools SpaMTP Seurat object into random pools for pseudo-bulking.
-
run_DE() - Runs EdgeR analysis for pooled data
-
save_pheatmap_as_pdf() - Saves a DEMsHeatmap as a PDF
-
PlotSinglePathway() - Plots the expression profile of a feature set corresponding to specified pathways onto a 2D scatter plot based on a dimensionality reduction technique.
-
PlotSinglePathwaySpatially() - Plot expression profile of a single RAMP pathway spatially
-
addGesecaScores() - Add GESECA Scores to SpaMTP Object
-
get_analytes_db() - Helper function for building a pathway db based on detected
-
list_to_pprcomp() - Creates a pprcomp object based on an input list
-
kneighbors_graph() - Construct a k-Nearest Neighbour Graph from Spatial Coordinates.
-
get_square_coordinates() - This function computes the coordinates of a square's four corners based on a given center point and width.
-
lowresMapping() - Maps SM pixels to low resolution ST data
-
hiresMapping() - Maps SM pixels to high resolution ST data
-
translate() - Creates a transformation matrix that translates an object in 2D
-
mirror() - Creates a transformation matrix that mirrors an object in 2D along either the x axis or y axis around its center of mass
-
stretch() - Stretch along angle
-
rigid.rot() - Creates a transformation matrix for rotation
-
rigid.transf() - Creates a transformation matrix for rotation and translation
-
rigid.transl() - Creates a transformation matrix for translation with an offset of (h, k)
-
rigid.refl() - Creates a transformation matrix for reflection
-
rigid.stretch() - Creates a transformation matrix for stretching
-
combine.tr() - Combines rigid tranformation matrices
-
statPlot() - Helper function for QC plots by generating intensity count data